Bringing together conceptual and empirical research from leading thinkers, this book critically examines ‘comfort’ in everyday life in an era of continually occurring social, political and environmental changes.
Comfort and discomfort have assumed a central position in a range of works examining the relations between place and emotion, the senses, affect and materiality. This book argues that the emergence of this theme reflects how questions of comfort intersect humanistic, cultural-political and materialist registers of understanding the world. It highlights how geographies of comfort becomes a timely concern for Human Geography after its cultural, emotional and affective aspects. More specifically, comfort has become a vital theme for work on mobilities, home, environment and environmentalism, sociability in public space and the body. ‘Comfort’ is recognized as more than just a sensory experience through which we understand the world; its presence, absence and pursuit actively make and un-make the world. In light of this recognition, this book engages deeply with ‘comfort’ as both an analytic approach and an object of analysis.
This book offers international and interdisciplinary perspectives that deploys the lens of comfort to make sense of the textures of everyday life in a variety of geographical contexts. It will appeal to those working in human geography, anthropology, feminist theory, cultural studies and sociology.
Van Asperen, E.N., Perrotti, A.,Baker, A. (2020) Coprophilous fungal spores: NPPs for the study of past megaherbivores. Geological Society, London, Special Publications, 511, https://doi.org/10.1144/SP511-2020-41
Published online on Dec. 2020 /Jan. 2021
This publication, lead by my colleague Eline van Asperen, will be an invaluable resources to scholars researching past populations of megharbivores or other aspects of palaeoeology using non-pollen palynomorphs, whether be it for the MSc dissertation, PhD, postdoc or at any point of their career. It is supplemented by an open-access key to the identification of dung fungal spores, which supersedes that previously provided on this blog (but some may find useful to still have access to both!):
Spores from coprophilous fungi are some of the most widely used non-pollen palynomorphs. Over the last decades, these spores have become increasingly important as a proxy to study the Pleistocene and Holocene megafauna. Although the number of types used in palaeoecology is relatively small, there is a wide range of coprophilous fungal taxa whose utility in palaeoenvironmental reconstruction remains under-researched. However, environmental and taphonomic factors influencing preservation and recovery of these spores are still poorly understood. Furthermore, our understanding of whether and how spores are transported across the landscape is limited.
Dung fungal spore presence appears to correlate well with megaherbivore presence. However, depending on the site, some limitations can remain to quantitative reconstructions of megaherbivore abundance from dung fungal spore records. The presence of dung fungal spores is often more significant than their absence and variation in in abundance with time should be interpreted with caution. Correlation with other proxies may provide a promising way forward.
The majority of studies using dung fungal spores as an indicator for large herbivore abundance are of records of Late Pleistocene and Holocene age, with a focus on Late Quaternary megafaunal extinction. However, more research could potentially extend records further back in time.
Are you a teacher in geography, geology, or environmental science?
The University is hosting Environmental Science, Geography and Geology taster sessions. Your students can hear about these degrees, along with seeing evidence of global issues of our time. We would love you to join us!
The online taster session is aimed at year 12, 13 or Access students:-
Join Peter Beveridge, the course leader for Earth Sciences at Teesside University to learn about the exciting subject areas of Environmental Science, Geography and Geology. Peter will explain how a degree in these subjects can lead to rewarding careers with real impact on society.
Peter will also show you evidence of great global issues of our time – climate change, fresh water supply and energy generation!
Booking is essential by the student.
The session will be delivered using Microsoft Teams Live, a link will be sent the day before the event.
Last week, we visited Vindolanda for a bit of a tester session of how effective 3D imaging strategies may be on some of their wooden collection. Yes – we actually visited… in PERSON! Our first socially distanced visit and with the glorious company of two other researchers at Teesside University, Rebecca Strong and Matthew Crowther:
Rebecca, Matthew and Rhys forming a love of 3D triangle
Vindolanda has a lot of wood in fantastic preservation. 3D imaging can normally capture wood beautifully, but we were interested to see whether we could capture the difficult things, such as little bits of graffiti carved into tools, woodworker’s stamps in the intricately designed combs, and the combination of wood, cob nails and vivianite in shoes. By and large, it was pretty successful! We’re still processing the scans, which will unfortunately take a while longer due to COVID-related access issues, but hopefully we can share them all with you soon. But for now, how about one of the shoes!
Now, the combs. We can say with pretty high confidence that these did not scan well. This was expected really, due to how intricate the geometry was and the stamp of interest being flush with the surface and visually unclear in the original object. But, we could maybe work a bit of photographic manipulation and extract some of the details to make a 3D relief of the comb instead, similar to some work we have done with the writing tablets. This certainly can’t be used for geometric analysis, and the colourful woody textures are lost, but it does offer a different approach to viewing the small and sometimes indiscernible evidence of individuals working away at Roman Vindolanda!
Pretty funky, right!? These visits are really important when planning a new 3D strategy within archaeological projects and museum displays because whilst we can offer some suggestions from afar, actually having a go scanning and engaging in detailed discussion really lays out what can, can’t, and could be done with the specific objects and their display! So, keep and eye open for some more of our wooden models, and who knows, maybe there will be some exciting developments soon..!
Anyway, happy to say that Vindolanda is even more picturesque than before 2020. If you’re sick of walking around the same old park for the past 8 months, commenting on the same old tree and the same old weather today, how about visiting the fabulous site and museum? As a bonus, they still serve great cakes in the café!
Vindolanda really is very pretty this time of year!
Now, at the start of the year, back when many people probably hadn’t heard of the place Wuhan before, we were gearing up for a couple research talks across Europe and planning our best-selling, No.1 hit blog posts to accompany them. Unfortunately, these were cancelled, as you can probably guess why. One of these, the Roman Finds Group, postponed the meeting to this weekend, to which we had the absolutely pleasure of being invited to showcase our 3D modelling work in a session dedicated to digital engagement at Vindolanda. Better yet, the normally modest audience bolstered to over 250 delegates across the two days! It was so good to see unanimous agreement on the importance of 3D in public engagement, exploring new and inclusive applications beyond focusing purely on a research viewpoint. There were even people that had held our 3D printed cranium many moons ago and still remember it fondly with every passing day! (Okay I may have embellished a little there). Maybe I’m bigging it up too much, but this was the first time I ever received a “hear hear” so I’m rolling with it.
Getting all prepared to present! All this time working from home and it’s STILL a really weird experience presenting to the PC/wall.
If you’re interested in viewing some of the talks for yourself, keep an eye out on the Roman Finds Group because they should be available online soon! In the meantime, check out the new Vindolanda game Vindolanda: The Missing Dead, available on the Google Play Store now ready for your next visit. It looks super! The entire meeting was fantastic, great work being shown from across Roman Scotland, North England and Vindolanda, but of course y’all know we love our 3D – I mean… it’s in the title of this post!
Joseph Mwamba conducted a research project with the Earth, Ecology and Environment research collective, while studying for his undergraduate degree at Teesside University and shares his conclusion:
“Plastic forms part of land and marine litter around the world. Plastics are manufactured in their hundreds of millions of metric tons globally and are often abandoned after use in the environment where they can remain for a long time. These form 2 types of pollutants: macro and micro litter.
Macro litter is big (> 5mm) while micro litter is small (<5mm).
Plastic macro litter, macroplastics, have been observed to injure or kill marine animals and birds by process of entanglement or suffocation from ingestion. Over time, macro litter fragments into micro litter due to the influence of UV radiation, hydrolytic properties of seawater/ water and oxidative properties of the atmosphere etc.
Plastic micro litter, microplastics, have been shown to be ingested by birds, fish and other marine organisms and there is concern about the implications of this. The full impact of microplastic pollution is yet to be understood and more research is needed.
Currently, efforts are being made to understand the impact of microplastic pollution. Identifying and isolating microplastics are the initial steps of the process. Microplastics sampled from sediment are extracted primarily by density separation or floatation. Microplastics in biota are extracted by chemical digestion.
Microplastics from seawater are extracted by filtering with nets. Once microplastics are extracted, there are identified visually under dissecting microscope with the help of fluorescence microscopy. Other identification methods include Infrared spectroscopy, Raman spectroscopy and Pyrolysis – GC/MS.
In this Student Researchers project, I wrote a mini literature review on various methods of extracting microplastics from sediments. By reviewing the extraction efficiencies and methodology of different methods, we found that methods that improve on classic density separation by using denser extraction liquids and more extraction techniques i.e. elutriation followed by density separation or the Munich Plastic Sediment Separator (MPSS), were the most successful at extraction of microplastics (small/ S-MPP: < 1 mm and large/ L-MPP: 1 – 5 mm) from sediment.
This informed our choice and method construction to improve the classic density by using the technique with LST Heavy Liquid to extract microplastics from sediment. We also found out in the review that although techniques for the extraction of microplastics were > 90% efficient now, in every other new method reported to the field, data was recorded differently and this posed a problem in the comparability of data from and studies couldn’t fully inform each other of microplastic studies around the globe. We kept this in mind when designing our method.
We then designed a method to extract microplastics from sediment using LST Heavy Liquid. Here we presented a less toxic and recyclable alternative extraction fluid to zinc chloride (1.6 – 1.7 kg/L) which is currently one of the best extraction solutions. LST Heavy Liquid’s density is much higher and allows for extractions of more microplastics than before.
Our method for extraction analysis is counting under a dissection microscope and this allows for data comparison as this is a popular analysis. This blog post makes public our work and allows those who read it to understand important issues of data comparison and work to make sure the problem is solved in future. We also through this work hope to inspire further innovation that will allow extractions to get better as has been the trend thus far.”
Dr Jamie Bojko at the National Horizons Centre (Teesside University), and colleagues at the Centre for Environment, Fisheries and Aquaculture Sciences (Cefas) and the University of Florida, have found and described a new DNA virus. The Nudiviridae are a family of large double-stranded DNA viruses that infect the cells of the gut in invertebrates, including insects and crustaceans. The phylogenetic range of the family has recently been enhanced via the description of viruses infecting penaeid shrimp, crangonid shrimp, homarid lobsters and portunid crabs. Here we extend this by presenting the genome of another nudivirus infecting the amphipod Dikerogammarus haemobaphes. The virus, which infects cells of the host hepatopancreas, has a circular genome of 119,754 bp in length, and encodes a predicted 106 open reading frames. This novel virus encodes all the conserved nudiviral genes (sharing 57 gene homologues with other crustacean-infecting nudiviruses) but appears to lack the p6.9 gene. Phylogenetic analysis revealed that this virus branches before the other crustacean-infecting nudiviruses and shares low levels of gene/protein similarity to the Gammanudivirus genus. Comparison of gene synteny from known crustacean-infecting nudiviruses reveals conservation between Homarus gammarus nudivirus and Penaeus monodon nudivirus; however, three genomic rearrangements in this novel amphipod virus appear to break the gene synteny between this and the ones infecting lobsters and penaeid shrimp. We explore the evolutionary history and systematics of this novel virus, suggesting that it be included in the novel Epsilonnudivirus genus (Nudiviridae). https://www.nature.com/articles/s41598-020-71776-3
Dr Jamie Bojko, undergraduate student Adam Ozkan and Dr Ambroise Baker were successful in securing a research grant from the British Bryological Society to carry out preliminary research into the viruses of bryophytes (small plants also known as mosses and liverworts) in the UK.
This research aims to conduct preliminary screening of three bryophyte species, and their microbiomes, to search for the presence of DNA viruses as well as endogenous viral insertions, reflecting their evolutionary history with viruses. This pioneering work will open new horizons to comprehend yet unsubscribed bryophyte-virus relationships, which underpin the ecosystem services provided by bryophytes.
Water shortages are forecast to affect 50% of the world’s population by 2030, impacting developing nations most acutely. To increase water security there has been a significant increase in Inter-basin Water Transfer (IBWT) schemes, engineering mega-projects that redistribute water from one basin to another. However, the implementation of these schemes is often contested, and evaluation of their complex impacts inadequate, or hidden from full public scrutiny. There is an urgent need to develop more integrated, holistic, and transparent ways of evaluating the multiple interlinking impacts of IBWT schemes of this scale. In this paper, we address this gap by outlining an experimental methodology to evaluate IBWT schemes using a multidisciplinary and transparent methodology which utilises publicly available data. We illustrate the method using a case study from the Inter-Linking Rivers Project in Northern India, comparing the results of the experimental approach against the official analysis of the proposed scheme produced by the State Government of Jharkhand. The results demonstrate that the proposed experimental method allows more detailed evaluation of spatial and temporal variability in water availability and demand, as well as holistic evaluation of the functioning of the proposed scheme under different future scenarios. Based on these results we propose a flexible framework for future evaluation of proposed water transfer schemes which embeds the principles of integrated assessment, transparency, and sound science which can be adapted to other IBWT projects across the world