BES2018 Thematic Session: Advancing our understanding of long-term ecology

In addition to my talk at the BES annual meeting, Althea Davies from the University of St Andrews and I had organised a session for which we invited keynote speakers on the theme: “Advancing our understanding of long-term ecology”

The Line up:

Maria Dornelas, University of St Andrews, UK: Temporal change in biodiversity change in the Anthropocene

Lizzy Jeffers, University of Oxford, UK: Plant controls on Late Quaternary whole ecosystem structure and function

Will Gosling, University of Amsterdam, Netherlands: Advancing palaeo-fire ecology

Helen Bennion, University College London, UK: Assessing the potential for aquatic plant recolonisation after local extirpation

Alistair Seddon, University of Bergen, Norway: Assessing ecological resilience using long-term ecological data: perspectives and prospects

Sandra Nogué, University of Southampton, UK: Comparative ecology of the Laurel forest pollen rain from Tenerife and La Gomera

Jack Williams, University of Wisconsin-Madison, USA: Ecological and Environmental Novelty

Pollen production review (in prep.) presented at the British Ecological Society Annual Meeting 2018

I was so excited when I received an email from the British Ecological Society (BES) saying that the abstract submitted with Sandra Nogue (University of Southampton) had been accepted for an oral presentation at the 2018 BES Annual Meeting!

And here I am presenting our review paper in preparation – thank you Sandra for taking this picture and many thanks also to the PollerGEN project for providing the illustration for the slide captured here.

Abstract: Modification of pollen production in response to global change: a review

How pollen abundance and quality impacts human–environment system is a significant focal point in: i) public health, with pollen-born allergies and asthma, ii) ecosystem services with crop pollination and nutrient cycling in nutrient-poor wetlands iii) global change ecology and conservation with reproductive limitation and vegetation regeneration. Atmospheric dispersal and pollinators are key dispersal mechanism currently investigated to quantify and forecast pollen impacts. However, pollen production by plants from natural, semi-natural and urban vegetation can be extremely sensitive to environmental conditions, while being at the same time the ultimate driver of these pollen impacts. Despite this crucial role, it is currently un-clear how pollen production will be modified by global change in the future. As a result, longer-term forecast of pollen impact may be associated with extremely large uncertainty.

As a first step towards addressing this key knowledge gap, we reviewed the environmental factors governing pollen production, in terms of pollen quantity and quality. We focussed on factors directly modifying pollen production, given existing vegetation cover and composition; and therefore excluded factors such as habitat loss. Studies tended to focus on the response of a single, or a small set of species, to a single factor. There appears to be a dearth of research studying pollen response at the vegetation plot or ecosystem level. The principal factors driving pollen production in the species studied were nutrient enrichment, increased atmospheric CO2 levels, changes in UV levels, and climatic factors modifying water availability, seasonality and temperatures. Other factors, including biological interaction such as grazing were extremely under-researched. The studied factors often had effects in opposite directions but the outcome of interaction between factors was rarely quantified. In addition, we found a body of literature that concerned flowering response. However, there was only limited quantitative data linking flowering response to pollen production.