Celebrating faculty research success

I am incredibly proud and excited to introduce the research blog of the School of Health and Life Science, Teesside University, UK. The SHLS-Research blog was designed as a key instrument, part of a wider effort to celebrate research success in the School.

The editorial will give you some background about the aims and justification for developing this blog website. I look forward to leading the editorial board initially and work alongside early carer researchers to transform the School’s research culture – let’s get writing!

New Paper: Dung fungal spores for the study of past megaherbivores

Van Asperen, E.N., Perrotti, A., Baker, A. (2020) Coprophilous fungal spores: NPPs for the study of past megaherbivores.

Published online on Dec. 2020 /Jan. 2021

This publication, lead by my colleague Eline van Asperen, will be an invaluable resources to scholars researching past populations of megharbivores or other aspects of palaeoeology using non-pollen palynomorphs, whether be it for the MSc dissertation, PhD, postdoc or at any point of their career. It is supplemented by an open-access key to the identification of dung fungal spores, which supersedes that previously provided on this blog (but some may find useful to still have access to both!):

https://doi.org/10.6084/m9.figshare.c.5240664

Abstract:

Spores from coprophilous fungi are some of the most widely used non-pollen palynomorphs. Over the last decades, these spores have become increasingly important as a proxy to study the Pleistocene and Holocene megafauna. Although the number of types used in palaeoecology is relatively small, there is a wide range of coprophilous fungal taxa whose utility in palaeoenvironmental reconstruction remains under-researched. However, environmental and taphonomic factors influencing preservation and recovery of these spores are still poorly understood. Furthermore, our understanding of whether and how spores are transported across the landscape is limited.

Dung fungal spore presence appears to correlate well with megaherbivore presence. However, depending on the site, some limitations can remain to quantitative reconstructions of megaherbivore abundance from dung fungal spore records. The presence of dung fungal spores is often more significant than their absence and variation in in abundance with time should be interpreted with caution. Correlation with other proxies may provide a promising way forward.

The majority of studies using dung fungal spores as an indicator for large herbivore abundance are of records of Late Pleistocene and Holocene age, with a focus on Late Quaternary megafaunal extinction. However, more research could potentially extend records further back in time.

PhD Opportunity: Tees estuary seals and ecological recovery

Dr Ambroise Baker and Dr Jamie Bojko, are offering a unique opportunity to undertake PhD studies researching the recolonization and resilience of seals (Phoca vitulina and Halichoerus grypus) in the Tees estuary, UK, following heavy industrialisation. This project connects with local partners, veterinarians and conservation groups, who provide long-standing data sets of seal population size, disease and behaviour. These data, complemented by data collected during the project, will be used to develop a model of ecosystem recovery and explore a positive narrative for conservation.

This exciting project focuses on how the population dynamic of a charismatic apex predator responds to pollution, disease, and connectivity across the North Sea. The student will have an opportunity to undertake multidisciplinary research, and develop a unique range of skills, from multivariate quantitative analysis, data collection in the field as well as molecular work in our state-of-the-art laboratories. This is a fantastic chance to work with a range of collaborators, providing additional insights into a professional career in ecology. We are looking for candidates with a strong interest in molecular ecology and environmental science, with a positive approach to develop conservation solutions within coupled human-nature systems.

Any question, email Ambroise and Jamie – a.baker@tees.ac.uk and j.bojko@tees.ac.uk

Link to FindaPhD advert

Apply to this competitive studentship: https://www.tees.ac.uk/sections/research/funding_details.cfm?fundingID=98

Talk at BES’s Festival of Ecology, Dec 2020

I simply can’t wait for the Festival of Ecology in Dec 2020, an all online event that replaces the British Ecological Society’s traditional in-person annual meeting this year. BES events are always a huge source of inspiration with talks from researchers around the World, discussions, and an opportunity to meet with long-time-no-see colleagues.

In addition, this year I am going to present some of my work on megafauna with a 15-mins talk:

Reviving the function of extinct megafauna: inspiration from the past

This talk will be strongly inspired by work recently published and introduced on this blog post and on this one.

It will also be an opportunity to wave high the Teesside flag and highlight the fantastic, positive energy coming from our Earth, Ecology and Environment Research Collective

getting ready for the festival of Ecology 2020

Earth, Ecology and Environment website at Teesside University

I am so incredibly proud and excited to introduce the new Earth, Ecology and Environment website, presenting our research collective at Teesside University.

This website will contribute to raising the profile of our research and academic activities. The hope is that, as we are all individually growing our academic portfolios and that the group grows with new researchers joining, the site will grow into a go-to resource of information about our successes, for colleagues around the world, partners, at the university as well as for existing and prospective students.

New Paper: Late-Quaternary megaherbivore extinctions in interior Alaska

Conroy, K.J., Baker, A.G., Jones, V.J., van Hardenbroek, M., Hopla, E.J., Collier, R., Lister, A.M., Edwards, M.E. (2020) Tracking late-Quaternary extinctions in interior Alaska using megaherbivore bone remains and dung fungal spores. Quaternary Research. DOI: https://doi.org/10.1017/qua.2020.19

Article first published online:  28 April 2020

Read article by following this link, taking you to the Cambridge University Press Core collection.

This research is considerably questioning some of the accepted wisdoms surrounding late-Quaternary extinctions of megaherbivore.  While research so far has associated the extinctions with dramatic ecosystem changes and crashes in abundance in all megaherbivores species – including those species that survived – here, we show that it is not systematically the case, by providing the counterexample of interior Alaska.

There is an increasing interest in of the late-Quaternary extinction, to understand their consequences for ecosystems function. Understanding these consequences help us guide rewilding initiatives and harness the potential of large vertebrate as ecosystem engineers in a more creative way, as explained in this article I have written for The Conversation.

Quaternary Research article abstract:

“One major challenge in the study of late-Quaternary extinctions (LQEs) is providing better estimates of past megafauna abundance. To show how megaherbivore population size varied before and after the last extinctions in interior Alaska, we use both a database of radiocarbon-dated bone remains (spanning 25-0 ka) and spores of the obligate dung fungus, Sporormiella, recovered from radiocarbon-dated lake-sediment cores (spanning 17-0 ka).

Bone fossils show that the last stage of LQEs in the region occurred at about 13 ka ago, but the number of megaherbivore bones remains high into the Holocene. Sporormiella abundance also remains high into the Holocene and does not decrease with major vegetation changes recorded by arboreal pollen percentages. At two sites, the interpretation of Sporormiella was enhanced by additional dung fungal spore types (e.g. Sordaria).

In contrast to many sites where the last stage of LQEs is marked by a sharp decline in Sporormiella abundance, in interior Alaska our results indicate the continuance of megaherbivore abundance, albeit with a major taxonomic turnover (including Mammuthus and Equus extinction) from predominantly grazing to browsing dietary guilds.

This new and robust evidence implies that regional LQEs were not systematically associated with crashes of overall megaherbivore abundance.”

The Conversation article: Late-Quaternary megafauna extinctions in interior Alaska

In an effort to make my research more accessible to a wider audience, I have just published an article in The Conversation. The aim of this piece is to explain the relevance of my latest scientific article to nature conservation and as a support for rewilding initiatives around the globe such as Rewilding Britain and Rewilding Europe.

Link for The Conversation article.

Link to original research published in the journal Quaternary Research.

 

First records of Mentha cervina (hart’s pennyroyal) in Britain

Baker, A. 2020. Mentha cervina (Lamiaceae), an emergent aquatic alien species naturalising at South Gare, North-East Yorkshire. Vol. 2 No. 1 British & Irish Botany.

https://britishandirishbotany.org/index.php/bib/article/view/37

Mentha cervina in bloom

Published and open access since Feb 26 2020.

Abstract: There is an increasing interest in recording early colonisation of organisms when studying changes in distribution ranges induced by climate change. Here, I describe one population of Mentha cervina L. (Hart’s pennyroyal), naturalising in the wild at South Gare, v.c.62 North-east Yorkshire. Two other populations have been reported in Britain and none are known from Ireland. Of the three populations ever reported from the wild in Britain, two are still extant. It is unclear what vectors disperse M. cervina in Britain and whether the species is becoming increasingly naturalised or not. Diagnostic characters: digitate bracteoles and four calyx teeth, are provided to facilitate the recording of this mint species by field botanists.

Mentha cervina, growing in situ in South Gare

A suspected introgressive population of Ilex aquifolium and Ilex x altaclerensis, Satlburn, Yorkshire, UK

This post introduces to a well-established and complex population of self-sown Ilex x altaclerensis (Highclere holly) observed in Saltburn Valley Gardens, Yorkshire, UK.

Ilex aquifolium - Ilex x altaclerensis hybrid in Saltburn Valley Gardens
Self-sown holly with definite hybrid characteristics, including large, broad and flat leaves.

We are familiar with the native holly, Ilex aquifolium, a small tree whose spiny evergreen foliage and small red berries are associated with end-of-year festivities. Ilex x altaclerensis was born of a marriage only possible as a result of human agency, when it took the Vicorian’s fancy to grow Ilex perado (Madeira holly) in glasshouses and allowed it to cross pollinate with the native I. aquifolium accidentally growing in the wild near that greenhouse. The resulting hybrids remain popular planted hollies.

In most cases, when growing side by side Ilex aquifolium and Ilex x altaclerensis are relatively distinct (See picture above). However, looking more closely among trees in Saltburn Valley Garden, I also found a series of specimens with confusing morphologies suggesting a full-range gradient of intermediates between typical Ilex x altaclerensis and typical Ilex aquifolium (See picture below). This variety in the hybrid population may be a sign of introgressive hybridisation, or introgression.

A range of leaf size and shapes found in Saltburn Valley Gardens: each leaf is a representative leaf for an individual tree.

Introgression is a biological term used to describe the process leading hybrids to re-hybridise with one of their parents. Such population tend to include specimens with the full spectrum of intermediates between typical hybrid and ‘pure’ species, blurring boundary between species.

Introgression is under the spotlight in nature conservation because it is claimed to threaten the integrity of some native species. For example, there are concerns that the charismatic English bluebell could be outcompeted by garden escape hybrids (between the English bluebell and Spanish bluebell). However this threat proved unfounded in recent research, despite the potential for introgresssion.

More controversially, I would happily argue that introgression is an opportunity for native species to become more global-change adapted. For example, a species may assimilate additional genes and characteristics that will render it more resilient to environmental change over time. Following this logic, the introgressive population of hollies from Saltburn Valley Garden may represent novel biodiversity fit to face human-induced environmental change.

Such cases of introgression are interesting case studies to better understand what lays ahead. In fact introgression between natives and non-native is expected to become increasingly common with the rise of the Anthorpocene, a period of earth history where we are seeing a big reshuffle in species distribution as well as changing environmental conditions such as increase CO2 in the atmosphere, climate warming and disruption of nutrient cycles.

In the absence of DNA studies, my suspicion of intr0gression between Ilex aquifolium and Ilex x altaclerensis are based on morphological observation. In Saltburn Valley Gardens, the best vegetative identification criteria between the two taxa can be summarised with the three-choices key as follows:

  • Leaves flat/plane, with small forward-pointing spines more or less adpressed to leaf margin, length:width ratio <2, often dull. __________________________Ilex x altaclerensis
  • Leaves showing one or more of the following characteristics: irregularly undulated, mixture of forward-adpressed and other types of spines, leaves unusually large (>12cm in length), hybrid vigor in terms of yearly growth _________________________ Ilex x altaclerensis
  • Leaves strongly undulated (wavy margin, significantly more three-dimensional than blade thickness, forming folds when pressed flat), spines patent or backward pointing (spines nearer apex often forward pointing but not small and adpressed to leaf margin), length:width ratio >2. ____________________________Ilex aquifolium

Natives and hybrids can often show individual leaves, branches or whole trees with spineless leaves.

Guest blog by Laura Waistell: Relating habitat age to species richness

Laura writes: “I am currently entering my second year of study of Environmental Science BSc at Teesside University. During my first year, I carried out a Student as researcher position with Ambroise, which was a fantastic opportunity to develop my skills as a researcher. Below is a description of my project as presented at the Tees Valley Nature Partnership annual conference in June 2019 hosted by Teesside University’s Ecology and Environment group.”

“This project sought to determine whether there was a link between the age of freshwater habitats and the diversity of resident molluscs. Data was collected across Cumbria, Norfolk and Glasgow to analyse biodiversity while a variety of historical mapping software was used to determine the approximate age of said sites.”

[Please note that ponds and lakes of natural origin with no discernible age (those marked 0) have been removed from the data presentation as they provide no further information and could not be plotted accurately]
“Sources used were: Oldmaps.co.uk, GoogleEarth and GIS. National grid references (NGR) were used to access historical maps of the area, which were compared in a GIS to determine the appearance of the water body. The times in which the water body first appeared in historical mapping were compared to that of previous maps to determine approximate age. Man-made water bodies had specific build dates, which were found by contacting various land managers and local bodies. Any water bodies that existed without change from the oldest available maps were recorded as 0 and they were assumed to be of natural origin.”

[Please note that ponds and lakes of natural origin with no discernible age (those marked 0) have been removed from the data presentation as they provide no further information and could not be plotted accurately]
“I found that younger ponds have a higher species richness on average. The opposite result was found for lakes as there is a apparent decrease in species richness with younger lakes. The oldest lakes show some of the highest species richness throughout the sample group, suggesting that more mature lakes yield the highest mollusc species richness.”

A natural lake
A natural lake

“There are many potential reasons for this trend in mollusc diversity in relation to age. For example, eutrophication and accumulation of sediments may be the reason for the trend in pond mollusc species richness. As sediments build up over time, there may be less available habitat.
Over time ponds may also experience encroachment from vegetation, particularly trees which may lead to eutrophication; building up over time and leading to a poorer water quality of which some mollusc species may be unable to tolerate.”

A man-made pond
A man-made pond

“Whereas, it may be that the lakes that have been established for a longer period have accumulated more mollusc species over time. This could be for a number of reasons such as: colonisation, establishment of plant species (food source and habitat) as well as the quality of the water and the maturity of natural water purification systems. Younger lakes may not have developed these yet and so cannot support the same number of species; particularly those more delicate and vulnerable to sudden change.”

“These data suggest that there is a correlation between the age of a water body and the species richness of molluscs. While older ponds decrease in biodiversity with age, lakes behave in an opposing manner.
The implications of this is a call for increased protection of older lakes as these harbour the highest diversity. Findings also suggest a reduction in richness with age in ponds may be down to accumulation of pollutants as well as sediments. This, too, may call for increased management to regenerate ponds, maintaining diversity.”

“Further research will be carried out on other organisms such as aquatic plants, beetles and dragonflies to determine any wider correlations.”

“Thank you to LTE for funding this research project and to Dr Ambroise Baker, Dr Alan Law and Dr Carl Sayer for help with research. Thank you also to NERC Hydroscape research project for providing biodiversity data.”